RAS Earth ScienceЗаписки Российского минералогического общества Zapiski of the Russian Mineralogical Society

  • ISSN (Print) 0869-6055
  • ISSN (Online) 2658-4352

Crystal Chemistry of Minerals and Inorganic Compounds with Lavendulan Clusters. I. New Compound NaCu(AsO)FC (x ~ 0.12) and Its Relation to Axelite

PII
S26584352S0869605525040056-1
DOI
10.7868/S2658435225040056
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
76-90
Abstract
The new compound NaCu(AsO)FC (x ~ 0.12) was obtained by chemical transport reactions. The crystal structure at 100 K (tetragonal, P4bm, a = 14.58917(16), c = 8.30072(14) Å, V = 1766.76(5) Å, Z = 2) was solved by direct methods and refined to R = 0.025. The crystal structure is based upon copper-arsenate layers formed by combining lavendulan clusters based on Cu1 and Cu2 atoms through Cu3O4FCl octahedra. The crystal structure exhibits sharp axial asymmetry. The NaCu(AsO)FC (x ~ 0.12) compound is closely related to axelite NaCuAsO)FC. Nonstoichiometry of composition is caused by isomorphism according to the scheme 2Na → Cu + ☐.
Keywords
минералоподобные соединения лавендулан кристаллическая структура акселит структурная сложность информация
Date of publication
09.06.2025
Year of publication
2025
Number of purchasers
0
Views
5

References

  1. 1. Babkevich P., Testa L., Kimura K., Kimura T., TuckerG.S., Roessli B., RønnowH.M. Magnetic structure of BaTiOCu4(PO4)4 probed using spherical neutron polarimetry. Phys. Rev. 2017. Vol. B96. P. 214436.
  2. 2. Bednorz J.G., MüllerK.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z.Phys. 1986. Vol. B64. P. 189—193.
  3. 3. Bindi L., Nespolo M., Krivovichev S.V., Chapuis G. and Biagioni C. Producing highly complicated materials. Nature does it better. Rep. Progr. Phys. 2020. Vol. 83. P. 106501.
  4. 4. Birch W., Pring A., Kolitsch U. Bleasdaleite, (Ca, Fe3+)2Cu5(Bi, Cu)(PO4)4(H2O, OH, Cl)13, a new mineral from Lake Boga, Victoria, Australia. Austr. J. Miner. 1999. Vol. 5. P. 69—75.
  5. 5. Breithaupt A. Bestimmung neuer Mineralien. 3. Lavendulan. J. Prakt. Chem. 1837. Bd. 10. S. 505—506.
  6. 6. Brese N. E., O’Keeffe M. Bond-valence parameters for solids. Acta Cryst. 1991. Vol. B47. P. 192—197.
  7. 7. Chiappero P.-J., Sarp H. Zdenekite, NaPbCu5(AsO4)4Cl·5H2O, a new mineral from the Cap Garonne Mine, Var, France. Eur. J. Miner. 1995. Vol. 7. P. 553—557.
  8. 8. Cooper M.A., Hawthorne F.C., Pinch W.W., Grice J.D. Andyrobertsite and Calcioandyrobertsite: Two New Minerals from the Tsumeb Mine, Tsumeb, Namibia. Miner. Rec. 1999. Vol. 30(3). P. 181—186.
  9. 9. CrysAlisPro Software System, version 1.171.41.104a. 2021. Rigaku Oxford Diffraction: Oxford, UK.
  10. 10. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J..K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J.Appl. Cryst. 2009. Vol. 42. P. 339—341.
  11. 11. Gorelova L.A., Vergasova L.P., Krivovichev S.V., Yu.Avdontseva E.Yu., Moskaleva S.V., Karpov G.A., Filatov S.K. Bubnovaite, K2Na8Ca(SO4)6, a new mineral species with modular structure from the Tolbachik volcano, Kamchatka peninsula, Russia. Eur. J.Miner. 2016. Vol. 28. P. 677—686.
  12. 12. Hayashida T., Kimura K., Urushihara D., Asaka T., Kimura T. Observation of ferrochiral transition induced by an antiferroaxial ordering of antipolar structural units in Ba(TiO)Cu4(PO4)4. J.Amer. Chem. Soc. 2021. Vol. 143. P. 3638—3646.
  13. 13. Hayashida T., Kimura K., Kimura, T. Switching crystallographic chirality in Ba(TiO)Cu4(PO4)4 by laser irradiation. J. Phys. Chem. Lett. 2022. Vol. 13. P. 3857—3862.
  14. 14. Hurlbut C.S.Jr. Sampleite, a new mineral from Chuquicamata, Chile. Amer. Miner. 1942. Vol. 27. P. 586—589.
  15. 15. Inosov D.S. Quantum magnetism in minerals. Adv. Phys. 2018. Vol. 67. P. 149—252.
  16. 16. Islam S.S., Ranjith K.M., Baenitz M., Skourski Y., Tsirlin A.A., Nath R. Frustration of square cu- pola in Sr(TiO)4(PO4)4. Phys. Rev. 2018. Vol. B97. P. 174432.
  17. 17. Kato Y., Kimura K., Miyake A., Tokunaga M., Matsuo A., Kindo K., Akaki M., Hagiwara M., Sera M., Kimura T., Motome Y. Magnetoelectric behavior from S = 1/2 asymmetric square cupolas. Phys. Rev. Lett. 2017. Vol. 118. P. 107601.
  18. 18. Kimura K., Babkevich P., Sera M., Toyoda M., Yamauchi K., Tucker G.S., Martius J., Fennell T., Manuel P., Khalyavin D.D., Johnson R.D., Nakano T., Nozue Y., RønnowH.M., Kimura T. Magnetodielectric detection of magnetic quadrupole order in Ba(TiO)Cu4(PO4)4 with Cu4O12 square cupolas. Nat. Comm. 2016a. Vol. 7. P. 13039.
  19. 19. Kimura K., Sera M., Kimura T. A2+ Cation control of chiral domain formation in A(TiO)Cu4(PO4)4 (A = Ba, Sr). Inorg. Chem. 2016b. Vol. 55. P. 1002—1004.
  20. 20. Kimura K., Sera M., Nakano T., Nozue Y., Kimura T. Magnetodielectric properties of the square cupola antiferromagnet Ba(TiO)Cu4(PO4)4. Phys. B: Cond. Matt. 2018a. Vol. 536. P. 93—95.
  21. 21. Kimura K., Toyoda M., Babkevich P., Yamauchi K., Sera M., NassifV., Rønnow H.M., Kimura T. A-cation control of magnetoelectric quadrupole order in A(TiO)Cu4(PO4)4 (A = Ba, Sr, and Pb). Phys. Rev. 2018b. Vol. B97. P. 134418.
  22. 22. Kimura K., Kimura S., Kimura T. Magnetoelectric behaviors in magnetic-field-induced phases of Pb(TiO)Cu4(PO4)4. J.Phys. Soc. Japan. 2019. Vol. 88. P. 093707.
  23. 23. Kimura K., Urushihara D., Asaka T., Toyoda M., Miyake A., Tokunaga M., Matsuo A., Kindo K., Yamauchi K., Kimura T. Synthesis, Structure, and anomalous magnetic ordering of the spin‑1/2 coupled square tetramer system K(NbO)Cu4(PO4)4. Inorg. Chem. 2020. Vol. 59. P. 10986—10995.
  24. 24. Kimura K., Kato Y., Kimura S., Motome Y., Kimura T. Crystal-chirality-dependent control of magnetic domains in a time-reversal-broken antiferromagnet. Quantum Mater. 2021. Vol. 6. P. 54.
  25. 25. Kimura K., Katsuyoshi T., Miyake A., Tokunaga M., Kimura S., Kimura T. Chirality-dependent magnetoelectric responses in a magnetic-field-induced ferroelectric phase of Pb(TiO)Cu4(PO4)4. Adv. Electr. Mater. 2022. Vol. 8. P. 2200167.
  26. 26. Kiriukhina G., Yakubovich O., Shvanskaya L., Volkov A., Dimitrova O., Simonov S., Volkova O., Vasiliev A. A novel mineral-like copper phosphate chloride with a disordered guest structure: Crystal chemistry and magnetic properties. Materials. 2022. Vol. 15. P. 1411.
  27. 27. Kornyakov I.V., Shilovskikh V.V., Bocharov V.N., Kalashnikova S.A., Krivovichev S.V. Polyoxometalates from gases: Mineral-inspired synthesis and characterization of novel compounds containing [M⊂Cu12O8(AsO4)8]q– polyoxocuprate clusters [M = Ti(IV), Bi(III)]. Inorg. Chem. Comm. 2023. Vol. 157. P. 111435.
  28. 28. Krivovichev S.V. Minerals with antiperovskite structure: a review. Z.Kristallogr. 2008. Vol. 223. P. 109—113.
  29. 29. Krivovichev S.V. Structural complexity of minerals: information storage and processing in the mineral world. Miner. Mag. 2013. Vol. 77. N 3. P. 275—326.
  30. 30. Krivovichev S.V. Structural diversity and complexity of antiperovskites. Coord. Chem. Rev. 2024. Vol. 498. P. 215484.
  31. 31. Krivovichev S.V., Krivovichev V.G., Hazen R.M., Aksenov S.M., Avdontceva M.S., BanaruA.M., GorelovaL.A., IsmagilovaR.M., KornyakovI.V., KuporevI.V., Morrison S.M., Panikorovskii T.L., Starova G.L. Structural and chemical complexity of minerals: an update. Mineral. Mag. 2022. Vol. 86. P. 183—204.
  32. 32. Meyer S., Müller-Buschbaum Hk. Cu4O12-baugruppen aus planaren CuO4-polygonen im barium-vanadi- loxocuprat(II)-phosphat Ba(VO)Cu4(PO4)4. Z.Anorg. Allg. Chem. 1997. Bd. 623. S. 1693—1698.
  33. 33. Nomura T., Kato Y., Motome Y., Miyake A., Tokunaga M., Kohama Y., Zherlitsyn S., Wosnitza J., Kimura S., Katsuyoshi T., Kimura T., Kimura K. High-field phase diagram of the chiral-lattice antiferromagnet Sr(TiO)Cu4(PO4)4. Phys. Rev. 2023. Vol. B108. P. 054434.
  34. 34. Norman M.R. Herbertsmithite and the search for the quantum spin liquid. Rev. Mod. Phys. 2016. Vol. 88. P. 041002.
  35. 35. Ondruš P., Veselovský F., Skála R., Sejkora J., Pažout R., Frýda J., Gabašová A., Vajdak J. Lemanskiite, NaCaCu5(AsO4)4Cl·5H2O, a new mineral species from the Abundancia mine, Chile. Canad. Miner. 2006. Vol. 44. P. 523—531.
  36. 36. Pekov I.V., Zubkova N.V., Agakhanov A.A., Yapaskurt V.O., Belakovskiy D.I., Britvin S.N., Sidorov E.G., Kutyrev A.V., Pushcharovsky D.Yu. New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. XIX. Axelite, Na14Cu7(AsO4)8F2Cl2. Miner. Mag. 2022. Vol. 87. P. 109—117.
  37. 37. Rästa R., Heinmaa I., Kimura K., Kimura T., Stern R. Magnetic structure of the square cupola compound Ba(TiO)Cu4(PO4)4. Phys. Rev. 2020. Vol. B101. P. 054417.
  38. 38. Sarp H. La mahnertite, (Na, Ca)Cu3(AsO4)2Cl·5H2O, un nouveau minéral de la mine de Cap Garonne, Var, France. Arch. Sci. Genève. 1996. Vol. 49 (2). P. 119—124.
  39. 39. Sheldrick G.M. SHELXT — Integrated space-group and crystal structure determination. Acta Cryst. 2015a. Vol. A71. P. 3—8.
  40. 40. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015b. Vol. C71. P. 3—8.
  41. 41. Süsse P., Schnorrer-Köhler G. Richelsdorfit, Ca2Cu5Sb[Cl(OH)6(AsO4)4]·6H2O, ein neues Mineral. N. Jb. Miner. Mh. 1983. S. 145—150.
  42. 42. Süsse P., Tillmann B. The crystal structure of the new mineral richelsdorfite, Ca2Cu5Sb(Cl/(OH)6/(AsO4)4)·6H2O. Z. Krist. 1987. Vol. 179. P. 323—334.
  43. 43. Testa L., Babkevich P., Kato Y., Kimura K., Favre V., Rodriguez-Rivera J. A., Ollivier J., Raymond S., Kimura T., Motome Y., Normand B., Rønnow H.M. Spin dynamics in the square-lattice cupola system Ba(TiO)Cu4(PO4)4. Phys. Rev. 2022. Vol. B105. P. 214406.
  44. 44. Yakovenchuk V.N., Pakhomovsky Ya.A., Konoplyova N.G., Panikorovskii T.L., Mikhailova Yu.A., Bocharov V.N., Krivovichev S.V., Ivanyuk G.Yu. Epifanovite, NaCaCu5(PO4)4[AsO2(OH)2]·7H2O: a New mineral from the Kester deposit, Sakha (Yakutia) Republic, Russia. Zapiski RMO (Proc. Russian Miner. Soc.). 2017. N 3. P. 30—39 (in Russian, English translation: Geol. Ore Dep. 2018. Vol. 60. P. 587—593).
  45. 45. Yue X., Ouyang Z., Cui M., Yin L., Xiao G., Wang Z., Liu J., Wang J., Xia Z., Huang X., HeZ. Syn- theses, structure, and 2/5 magnetization plateau of a 2D layered fluorophosphate Na3Cu5(PO4)4F·4H2O. Inorg. Chem. 2018. Vol. 57. P. 3151—3157.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library